Dichte, feuchte Laubwälder, durch den Monsun anschwellende Flüsse und tiefe Schluchten – im indischen Staat Meghalaya vermodern Holzbrücken leicht oder werden von den Fluten weggerissen. Auch Brücken aus Stahl und Beton kommen hier an ihre Grenzen. Brücken aus lebendenden Baumwurzeln überdauern hingegen Jahrhunderte. Prof. Ferdinand Ludwig von der Technischen Universität München (TUM) hat diese besonderen Bauwerke untersucht und schlägt vor, die spezielle Bautechnik in die moderne Planung zu integrieren.
Vom nordindischen Meghalaya-Plateau führen unzugängliche Täler und Schluchten in die weiten Flächen Bangladeschs. In den Monsunmonaten schwellen die Gebirgsbäche in den Wäldern zu wilden Strömen an. Um diese überwinden zu können, bauten schon die indigenen Khasi- und Jaintia-Völker ihre Brücken aus den lebenden Luftwurzeln des Gummibaums Ficus elastica. Solche stabilen Brücken aus ineinander verschlungenen Wurzeln können mehr als 50 Meter lang und mehrere Hundert Jahre alt werden.
In einem Forschungsprojekt der TU München und der Albert-Ludwigs-Universität Freiburg wurden 74 solcher lebenden Brücken unter der Leitung von Prof. Ferdinand Ludwig (Technische Universität München) und Prof. Thomas Speck (Albert-Ludwigs-Universität Freiburg) analysiert. Obwohl in den Medien und auf Blogs die lebenden Meghalaya-Brücken schon viel besprochen wurden, gab es bislang nur wenige wissenschaftliche Untersuchungen. Auch war das Wissen um die alten Bautechniken bislang kaum schriftlich dokumentiert. Die Forscher führten Interviews mit den Brückenbauern, um den Bauprozess besser zu verstehen. Um einen Überblick über die komplexe Wurzelstruktur zu gewinnen, machten sie mehrere tausend Fotos und erstellten daraus 3D-Modelle. Darüber hinaus kartierte das Team die Brücken erstmals.
Eine Brücke, die sich selbst baut
Üblicherweise beginnt der Bauprozess mit einer Pflanzung: Wer eine Brücke plant, pflanzt einen Setzling des Ficus elastica an einem Flussufer oder am Rand einer Schlucht ein. Zu einem bestimmten Zeitpunkt ihres Wachstums entwickelt die Pflanze Luftwurzeln. Die Luftwurzeln werden dann um eine Hilfskonstruktion aus Bambusstangen oder Palmenstämmen geschlungen und horizontal über den Fluss geleitet. Wenn die Wurzeln bis ans andere Ufer gewachsen sind, werden sie dort eingepflanzt. Sie entwickeln kleinere Tochterwurzeln, die ebenfalls an das Ufer gelenkt werden, wo sie eingepflanzt wurden. Durch das stetige Pflanzenwachstum und verschiedene Schlingtechniken bilden die Wurzeln des Ficus elastica hochkomplexe Strukturen, die den Brücken eine große mechanische Stabilität verleihen. Immer wieder werden die neu wachsenden Wurzeln in die bereits bestehende Struktur eingearbeitet.
Eine wichtige Rolle spielen die Eigenschaften des Ficus elastica: Die Wurzeln reagieren auf mechanische Belastungen mit einem sekundären Wurzelwachstum. Außerdem sind die Luftwurzeln zu Verwachsungen fähig: Bei Verletzungen kommt es zur sogenannten Überwallung und Kallusbildung, ein Prozess, den man auch vom Wundverschluss bei Bäumen kennt. So können sich zum Beispiel zwei Wurzeln, die zusammengepresst werden, miteinander verbinden und verwachsen. Gebaut und instandgehalten werden die Brücken von Einzelpersonen, Familien oder auch mehreren Dorfgemeinschaften, die die Brücke nutzen. Die lebenden Brücken sind also zum einen eine menschengemachte Technik, zum anderen aber auch eine ganz spezielle Form der Kultivierung einer Pflanze.
Bauen für nachfolgende Generationen
Bis eine lebende Brücke aus Ficus elastica fertig ist, vergehen Jahrzehnte, wenn nicht Jahrhunderte. An ihrem Bau beteiligen sich oftmals mehrere Generationen. Die Brücken sind ein einmaliges Beispiel für vorausschauendes Bauen. Davon lässt sich viel lernen: Wir stehen heute vor Umweltproblemen, die nicht nur uns betreffen, sondern vor allem nachfolgende Generationen. Eine Möglichkeit wäre, dieses Thema wie die Khasi anzugehen.
Lebende Gebäude könnten Städte abkühlen
Die Erkenntnisse über die alten Techniken der indigenen Völker könnten dabei helfen, die moderne Planung weiterzuentwickeln. Prof. Ferdinand Ludwig ist selbst Architekt und bezieht in sein Planen und Bauen Pflanzen bereits als lebende Baustoffe mit ein. 2007 begründete er mit diesem Ansatz ein neues Forschungsgebiet: Die Baubotanik.
Indem Pflanzen ins Bauen integriert werden, könnten wir uns besser an die Folgen des Klimawandels anpassen, erklärt er: „Stein, Beton und Asphalt heizen sich bei hohen Temperaturen schnell auf, besonders in den Städten entsteht Hitzestress. Pflanzen sorgen für Kühlung und ein besseres Klima in der Stadt. Mit der Baubotanik muss nicht extra Raum für die Pflanzen geschaffen werden. Sie sind integraler Bestandteil der Bauwerke.“